
©2021 Advanced Energy Industries, Inc.

Advanced Energy’s Artesyn iLS600, iLS600-R and iLS1500
series are programmable DC power supplies with a single
output that offers output power to 600 and 1500 watts. With
12-bit D/A & A/D converters embedded, the power supplies
come with the capability of reporting voltage and current very
accurately. The iLS600, iLS600-R and iLS1500 series provide
convenient digital rotary controls for voltage and current
adjustment and the power supplies also come with rear ports
that allow remote control via USB, Ethernet, and analog
control inputs. The iLS600, iLS600-R and iLS1500 series are
LXI certified, details for using this interface can be found in
our Programming Manual.

ARTESYN
iLS600, iLS600-R and iLS1500 Series
Intelligent Laboratory Power
600W/1500W Scripting Language Manual

AT A GLANCE

Total Power

600 and 1500 Watts

of Outputs

Single

USER MANUAL

iLS600, iLS600-R and iLS1500 Series

Rev. 05.20.21_#1.0 advancedenergy.com 2

SECTION DESCRIPTION PAGE
1 OVERVIEW 3
2 SCRIPTING LANGUAGE SYNTAX 4

2.0 Script Naming 4
2.1 Script Format 4
2.2 Whitespace 4
2.3 Strings 4
2.4 Numbers 5
2.5 Labels 5
2.6 Keywords 5
2.7 Variables 6
2.8 Reserved Variables 6
2.9 Statement Syntax 8

3 RUNNING SCRIPTS 11
3.0 Via SCPI Commands 11
3.1 Via the Front Panel 16

4 EXAMPLES 17
4.0 EXAMPLE 1: Sawtooth Wave 17
4.1 EXAMPLE 2: Analog Output Triangle Wave 18
4.2 EXAMPLE 3: Timer Triggered Output 19
4.3 EXAMPLE 4: Analog Input Triggered Output 20
4.4 EXAMPLE 5: Arbitrary Waveform 21

5 LIMITATIONS 35
6 STATUS AND ERRORS 36

Table of Contents

iLS600, iLS600-R and iLS1500 Series

Rev. 05.20.21_#1.0 advancedenergy.com 3

A full-featured scripting language (loosely based on the BASIC programming language) has
been implemented within Artesyn Power’s Bench iLS and Rack iLS power supplies. Scripts
can be downloaded and uploaded between the power supply and a computer via SCPI
commands using either of the USB or Ethernet (LAN) interfaces.

Up to 10 scripts may be stored verbatim in persistent memory within the power supply and
recalled. Scripts may be run/halted from either the front panel or via SCPI commands.

When run, scripts are compiled by the power supply’s processor. Errors in the script will
cause it to not be executed. If there are no errors, the compiled script is executed.

Certain operating parameters (such as the voltage and current setpoints) are accessible
directly by a script allowing complex waveform outputs to be synthesized.

Section 1 OVERVIEW

iLS600, iLS600-R and iLS1500 Series

Rev. 05.20.21_#1.0 advancedenergy.com 4

2.0 Scripting Naming
Script names may be up to 32 characters in length. However, on the front panel only the first
14 characters are displayed.

2.1 Script Format
Scripts are written as human-readable text. Scripts are composed of an ordered series of
lines. The first line of the script is the starting point of the script when it is run.

Each line may contain one statement. A statement is usually a keyword followed by zero or
more parameters (which can include other keywords).

Only one operation is allowed per line. Compounding operations is not permitted.

2.2 Whitespace
Whitespace characters (tabs and spaces) may be inserted between each parameter of a
statement.

A line can consist of only whitespace. Such a line is ignored by the compiler. Lines that start
with the REM keyword are also ignored by the compiler.

2.3 Strings
Strings are comprised of upper-case (A thru Z), lower case (a thru z), numbers (0 thru 9)
and underscore characters. The first character of a string cannot be a number.

Section 2 SCRIPTING LANGUANGE SYNTAX

iLS600, iLS600-R and iLS1500 Series

Rev. 05.20.21_#1.0 advancedenergy.com 5

2.4 Numbers
Numbers are comprised of numeric characters (0 thru 9), decimals and minus signs. Only
one decimal may appear in a number. Only one minus sign may appear in a number and, if
present, it must be the first character of a number.

2.5 Labels
Labels are used to identify points of execution in a script. A label must be put on its own
line in a script, it cannot have a statement appended to it in the same line. A label is a string
followed by a colon character (with no interposing whitespace).

2.6 Keywords
The following keywords are used in the scripting language.

END

FOR

GOSUB

GOTO

IF

LET

NEXT

RETURN

WAIT

TO

STEP

THEN

The lower-case versions of these keywords are also accepted, but mixing of cases is not.

Section 2 SCRIPTING LANGUANGE SYNTAX

iLS600, iLS600-R and iLS1500 Series

Rev. 05.20.21_#1.0 advancedenergy.com 6

2.7 Variables
A variable is a string that corresponds to a floating-point value in memory. Variables are
used in scripts to hold values and make computations.

A variable may not be named with the same string as a keyword.

2.8 Reserved Variables
The following variables are reserved. These variables may be entered into the script as
uppercase or lower-case strings (but not a combination of upper and lower case). These
reserved variables map to corresponding system properties. Use of these variables is how
control over the power supply by the script is realized. The use of these variables is detailed
below:

VOLTAGE_SETPOINT – This variable holds the voltage setpoint of the power supply (in
Volts). If the output is enabled when this variable is written, the setpoint will immediately
influence the output.

CURRENT_SETPOINT – This variable holds the current setpoint of the power supply (in
Amperes). If the output is enabled when this variable is written, the setpoint will immediately
influence the output.

POWER_SETPOINT – This variable holds the power setpoint of the power supply (in Watts).
If the output is enabled when this variable is written, the setpoint will immediately influence
the output.

OVER_VOLTAGE_LIMIT – This variable holds the over-voltage limit of the power supply (in
Volts). When this variable is written, the limit will immediately be registered for the purpose
of protecting the device connected to the output of the power supply.

OVER_CURRENT_LIMIT – This variable holds the over-current limit of the power supply (in
Amperes). When this variable is written, the limit will immediately be registered for the
purpose of protecting the device connected to the output of the power supply.

Section 2 SCRIPTING LANGUANGE SYNTAX

iLS600, iLS600-R and iLS1500 Series

Rev. 05.20.21_#1.0 advancedenergy.com 7

OVER_POWER_LIMIT – This variable holds the over-power limit of the power supply (in
Watts). When this variable is written, the limit will immediately be registered for the purpose
of protecting the device connected to the output of the power supply.

OUTPUT_MODE – This variable can be used to turn the output of the power supply on and
off. Writing a 0.0 to the variable will turn the output off. Writing a 1.0 to this variable will turn
the output on.

VOLTAGE_MEASURED – This variable is continuously updated by the power supply as the
script runs. It reflects the voltage (in Volts) being output by the power supply.

CURRENT_MEASURED – This variable is continuously updated by the power supply as the
script runs. It reflects the current (in Amperes) being output by the power supply.

POWER_MEASURED – This variable is continuously updated by the power supply as the
script runs. It reflects the power (in Watts) being output by the power supply.

TIMEBASE – the TIMEBASE variable holds a running count of the number of milliseconds
that have elapsed since the script was started.

ANALOG_INPUT_VOLTAGE – This variable is automatically updated by the power supply
as the script runs. When in script mode the voltage analog input will be scaled from 0.0V to
10.0V. This variable reflects the voltage being read on the analog input.

ANALOG_INPUT_CURRENT – This variable is automatically updated by the power supply
as the script runs. When in script mode the current analog input will be scaled from 0.0V to
10.0V. This variable reflects the voltage being read on the analog input.

Section 2 SCRIPTING LANGUANGE SYNTAX

iLS600, iLS600-R and iLS1500 Series

Rev. 05.20.21_#1.0 advancedenergy.com 8

OVER_POWER_LIMIT – This variable holds the over-power limit of the power supply (in
Watts). When this variable is written, the limit will immediately be registered for the purpose
of protecting the device connected to the output of the power supply.

ANALOG_OUTPUT – Writing a voltage value (from 0.0 to 10.0 Volts) to this variable will
cause the same value to be output from the analog output port of the power supply.

NOTE: for those users that are using analog I/O with a 5V range, they will simply need to
restrict their script to operate in that range (i.e. treat input voltages above 5V as 5V, never
set the analog output about 5V).

NOTE: many of these variables have operating limits that are applied when they are written.
For example, attempting to write a value of 500.0 Volts to the voltage setpoint variable will
be ignored since none of the Bench or Rack models support a voltage that high. These
limits are applied on a model-by-model basis and match the limits found using the front
panel controls of the Bench or Rack system.

2.9 Statement Syntax
The following rules of syntax apply to statements in the script:

REM<any text allowed>

Remark statement: used to enter comments into the script. This statement does not affect
script operation.

END

End statement: Used to halt a script. Note: all scripts have an implicit END immediately after
the last line of the script.

Section 2 SCRIPTING LANGUANGE SYNTAX

iLS600, iLS600-R and iLS1500 Series

Rev. 05.20.21_#1.0 advancedenergy.com 9

FOR <variable1> = <constant2 | variable2> TO < constant3 | variable3> STEP
<constant4 | variable4>

Loop statement: The first variable after the FOR keyword identifies the loop variable. The
variable is initialized to the value in constant2/variable2. Each time the corresponding NEXT
statement is reached, the loop variable is compared to constant3/variable3. If they are equal
the loop exits and the script continues to execute at the line following the NEXT statement.
Otherwise, the value in constant4/variable4 is added to the loop variable and the script
continues to execute at the line following the FOR statement.

NEXT <variable>

The NEXT statement must contain the loop variable to a previously encountered FOR
statement. If it does not, the NEXT statement is ignored, otherwise refer to the loop
statement to see how the NEXT statement is handled.

GOSUB <label>

Subroutines: The script starts to execute at the line following the label declared in this
GOSUB statement. The index of the line immediately following the GOSUB statement is
pushed onto the return stack.

RETURN

Return from subroutine: The index of the line after the most recently called GOSUB
statement is retrieved and the script starts executing from that line. NOTE: if there is no
corresponding GOSUB statement then the RETURN statement acts the same as an END
statement.

GOTO <label>

Unconditional branch statement: The script starts executing from the line immediately after

the specified label.

Section 2 SCRIPTING LANGUANGE SYNTAX

iLS600, iLS600-R and iLS1500 Series

Rev. 05.20.21_#1.0 advancedenergy.com 10

IF <variable1/constant1> <conditional> < variable2/constant2> THEN <label>

Conditional branch statement: variable1/constant1 is compared to variable2/constant2. The
conditional operator can be one of the following:

== equal to

!= not equal to

> greater than

>= greater than or equal to

< less than

<= less than or equal to

If the condition specified by the conditional operator is true then the script starts executing
from the line immediately after the specified label, otherwise the script continues to execute
from the line immediately following the IF statement.

<LET> <variable1> = <variable2/contant2>

Assignment statement (simple). The simple assignment statement places the contents of
variable2/constant2 into the memory location for variable1.

<LET> <variable1> = <variable2/constant2> <operator> <variable3/constant3>

Assignment statement with math operation: In this assignment operation
variable2/constant2 is operated on by variable3/constant3. The operation can be one of (+ -
* /). The result of the operation is then place in variable1.

NOTE: for both the simple assignment and assignment with math operation, the LET
keyword is optional. Thus:

LET a = a + 1

and

a = a + 1

are identical from the perspective of the compiler.

WAIT <variable | constant>

The WAIT statement delays processing of the next line of the script for the number of
milliseconds held in variable/constant.

Section 2 SCRIPTING LANGUANGE SYNTAX

iLS600, iLS600-R and iLS1500 Series

Rev. 05.20.21_#1.0 advancedenergy.com 11

3.0 Via SCPI commands
The following SCPI commands have been implemented to allow download, upload, storage,
retrieval, running and halting of script. As well the status of the scripting system is
accessible via SCPI commands.

SYSTem:SCRIpt:NEW – Takes the new script’s name (in quotes) as a parameter and
creates a new active script with no lines and with the new given name.

SYSTem:SCRIpt:LINE – Takes one line of a script (in quotes) as a parameter and appends
it to the active script.

SYSTem:SCRIpt:LINE? – Takes no parameters and returns the next line from the active
script (in quotes).

SYSTem:SCRIpt:LOAD – Takes a number from 0 to 9 as a parameter and loads the script
specified by the number from persistent memory into the active script RAM.

SYSTem:SCRIpt:STORe – Takes a number from 0 to 9 as a parameter and stores the active
script into persistent memory at the location specified by the number.

SYSTem:SCRIpt:RUN – Takes no parameters and, if in script mode and idle, will cause the
active script to be compiled and run (if no script errors occur).

SYSTem:SCRIpt:HALT – Takes no parameters and halts any script that is running.

SYSTem:SCRIpt:STATe? – this command will return “IDLE” if the script system is not
performing any tasks, “RUN” if the script system is running a script, and “BUSY” if the script
system is loading/storing a script from/to persistent memory.

Section 3 RUNNING SCRIPTS

iLS600, iLS600-R and iLS1500 Series

Rev. 05.20.21_#1.0 advancedenergy.com 12

Below is an example of the command stream used to download the EXAMPLE 1 script and
store it into the power supply’s persistent memory. The < and > characters are not part of
the actual stream, but are used to indicate the direction of data flow. A > character indicates
a SCPI command from the computer to the power supply and a< character indicates a SCPI
response from the power supply to the computer.

>*IDN?

<Artesyn Power,Rack 50-40 iLS,000000000000,0.00.3688/1.01.1530

>SYSTEM:PROMPT ON

<

>SYST:SCRI:STAT?

<IDLE

>SYST:SCRI:NEW "EXAMPLE 1“

>

>SYST:SCRI:STAT?

<IDLE

>SYST:SCRI:LINE "rem EXAMPLE 1 - Sawtooth waveform "

<

>SYST:SCRI:STAT?

<IDLE

>SYST:SCRI:LINE " "

<

>SYST:SCRI:STAT?

<IDLE

>SYST:SCRI:LINE "rem (optional) setup "

<

>SYST:SCRI:STAT?

<IDLE

>SYST:SCRI:LINE "voltage_setpoint = 0 "

<

Section 3 RUNNING SCRIPTS

iLS600, iLS600-R and iLS1500 Series

Rev. 05.20.21_#1.0 advancedenergy.com 13

>SYST:SCRI:STAT?

<IDLE

>SYST:SCRI:LINE "current_setpoint = 40 "

<

>SYST:SCRI:STAT?

<IDLE

>SYST:SCRI:LINE "output_mode = 1 "

<

>SYST:SCRI:STAT?

<IDLE

>SYST:SCRI:LINE " "

<

>SYST:SCRI:STAT?

<IDLE

>SYST:SCRI:LINE "rem loop label used to create infinite loop "

<

>SYST:SCRI:STAT?

<IDLE

>SYST:SCRI:LINE "loop: "

<

>SYST:SCRI:STAT?

<IDLE

>SYST:SCRI:LINE " "

<

>SYST:SCRI:STAT?

<IDLE

>SYST:SCRI:LINE "rem use FOR/NEXT loop to create ramp "

<

>SYST:SCRI:STAT?

Section 3 RUNNING SCRIPTS

iLS600, iLS600-R and iLS1500 Series

Rev. 05.20.21_#1.0 advancedenergy.com 14

<IDLE

>SYST:SCRI:LINE "for i=0 to 25 step 0.01 "

<

>SYST:SCRI:STAT?

<IDLE

>SYST:SCRI:LINE "let voltage_setpoint = i "

<

>SYST:SCRI:STAT?

<IDLE

>SYST:SCRI:LINE "wait 1 "

<

>SYST:SCRI:STAT?

<IDLE

>SYST:SCRI:LINE "next i "

<

>SYST:SCRI:STAT?

<IDLE

>SYST:SCRI:LINE " "

<

>SYST:SCRI:STAT?

<IDLE

>SYST:SCRI:LINE "rem jump back to create next ramp "

<

>SYST:SCRI:STAT?

<IDLE

>SYST:SCRI:LINE "goto loop "

<

>SYST:SCRI:STAT?

<IDLE

Section 3 RUNNING SCRIPTS

iLS600, iLS600-R and iLS1500 Series

Rev. 05.20.21_#1.0 advancedenergy.com 15

>SYST:SCRI:STOR 0

<

>SYST:SCRI:STAT?

<IDLE

The following SCPI command stream illustrates loading the script from memory location 0,
running it, then halting it.

>SYST:SCRI:LOAD 0

<

>SYSTEM:MODE SCRI

<

>SYST:SCRI:STAT?

<IDLE

>SYST:SCRI:RUN

<

>SYST:SCRI:STAT?

<RUN

>SYST:SCRI:HALT

<

Section 3 RUNNING SCRIPTS

iLS600, iLS600-R and iLS1500 Series

Rev. 05.20.21_#1.0 advancedenergy.com 16

3.1 Via the Front Panel
Scripts cannot be entered via the front panel, however they can be loaded from non-volatile
memory and executed via the front panel.

To run a script, enter the setup menu mode selection menu:

Then select SCRIPT mode:

When the script mode is selected, the user is prompted to select one of the ten scripts
stored in memory (presuming the user has downloaded scripts and stored them in memory):

When the setup menu is exited, and the system is in SCRIPT mode, the selected script can
be run and halted via the enable button.

Section 3 RUNNING SCRIPTS

iLS600, iLS600-R and iLS1500 Series

Rev. 05.20.21_#1.0 advancedenergy.com 17

4.0 EXAMPLE 1: Sawtooth Wave
The following script outputs a continuous 0 to 25V sawtooth waveform:

rem EXAMPLE 1 - Sawtooth waveform

rem (optional) setup

voltage_setpoint = 0

current_setpoint = 40

output_mode = 1

rem loop label used to create infinite loop

loop:

rem use FOR/NEXT loop to create ramp

for i=0 to 25 step 0.01

let voltage_setpoint = i

wait 1

next I

rem jump back to create next ramp

goto loop

Below is a screen shot of the output of the Rack 50-40 iLS power supply running the script:

Section 4 EXAMPLES

iLS600, iLS600-R and iLS1500 Series

Rev. 05.20.21_#1.0 advancedenergy.com 18

4.1 EXAMPLE 2: Analog Output Triangle Wave
The following script outputs a continuous 0 to 10V triangle waveform from the analog
output port of the power supply:

rem EXAMPLE 2 - Triangle wave on analog output (0.1V steps)

loop:

rem ramp up

analog_output = 0

for i=0 to 100 step 1

analog_output = analog_output + 0.1

wait 10

next I

rem ramp down

analog_output = 10.0

for i=0 to 100 step 1

analog_output = analog_output - 0.1

wait 10

next I

goto loop

Below is a screen shot of the output of the Rack 50-40 iLS power supply running the script:

Section 4 EXAMPLES

iLS600, iLS600-R and iLS1500 Series

Rev. 05.20.21_#1.0 advancedenergy.com 19

4.2 EXAMPLE 3: Timer Triggered Output
The following script illustrate that long delays are possible when running scripts:

rem EXAMPLE 3 - Timer triggered output

rem (optional) setup

voltage_setpoint = 25

current_setpoint = 20

power_setpoint = 100

output_mode = 0

rem output will turn on 123.456 seconds after start of script

wait 123456

output_mode = 1

rem NOTE: output does NOT turn off when script ends

End

NOTE: the 32-bit millisecond clock can implement delays up to 1193 days with a single
WAIT statement. Realistically, while reasonably accurate, the 1 millisecond timer cannot be
expected to keep accurate time over large numbers of hours and cannot be used as a
substitute for a real-time clock.

Section 4 EXAMPLES

iLS600, iLS600-R and iLS1500 Series

Rev. 05.20.21_#1.0 advancedenergy.com 20

4.3 EXAMPLE 4: Analog Input Triggered Output
The following script illustrates the use of an analog input port to control the output mode
(ON or OFF) of the power supply:

rem EXAMPLE 4 - Analog input triggered output

rem (optional) setup

voltage_setpoint = 30

current_setpoint = 10

power_setpoint = 400

output_mode = 0

rem output will turn on when the (voltage) analog input

rem exceeds 2.5V and off when it falls below 1.5V

loop:

if analog_input_voltage > 2.5 then turn_on

if analog_input_voltage < 1.5 then turn_off

wait 1

goto loop

turn_on:

output_mode = 1

wait 1

goto loop

turn_off:

output_mode = 0

wait 1

goto loop

Section 4 EXAMPLES

iLS600, iLS600-R and iLS1500 Series

Rev. 05.20.21_#1.0 advancedenergy.com 21

4.4 EXAMPLE 5: Arbitrary Waveform
The following is an example of an arbitrary waveform generated with a script:

rem EXAMPLE 5 - Arbitrary waveform

rem initial conditions

voltage_setpoint = 12

current_setpoint = 40

power_setpoint = 1500

output_mode = 1

wait 500

rem step through peices of waveform

gosub step1

gosub step2

gosub step3

gosub step4

End

rem step 1 - drop to 3V and hold for 250ms then ramp to 6V over 50ms

step1:

voltage_setpoint = 3

wait 250

for i=3 to 6 step 0.06

voltage_setpoint = i

wait 1

next i

Return

rem step 2 - output 5 cycles of 4V to 8V sinusoid with frequency of 5Hz

step2:

gosub step2b

gosub step2b

gosub step2b

gosub step2b

Section 4 EXAMPLES

iLS600, iLS600-R and iLS1500 Series

Rev. 05.20.21_#1.0 advancedenergy.com 22

gosub step2b

Return

rem step 2b - output one cycle

step2b:

voltage_setpoint = 6

wait 1

voltage_setpoint = 6.062821518

wait 1

voltage_setpoint = 6.125581039

wait 1

voltage_setpoint = 6.188216627

wait 1

voltage_setpoint = 6.250666467

wait 1

voltage_setpoint = 6.31286893

wait 1

voltage_setpoint = 6.374762629

wait 1

voltage_setpoint = 6.436286483

wait 1

voltage_setpoint = 6.497379774

wait 1

voltage_setpoint = 6.557982212

wait 1

voltage_setpoint = 6.618033989

wait 1

voltage_setpoint = 6.67747584

wait 1

voltage_setpoint = 6.736249105

wait 1

voltage_setpoint = 6.794295781

wait 1

Section 4 EXAMPLES

iLS600, iLS600-R and iLS1500 Series

Rev. 05.20.21_#1.0 advancedenergy.com 23

voltage_setpoint = 6.851558583

wait 1

voltage_setpoint = 6.907980999

wait 1

voltage_setpoint = 6.963507348

wait 1

voltage_setpoint = 7.018082832

wait 1

voltage_setpoint = 7.07165359

wait 1

voltage_setpoint = 7.124166756

wait 1

voltage_setpoint = 7.175570505

wait 1

voltage_setpoint = 7.225814107

wait 1

voltage_setpoint = 7.274847979

wait 1

voltage_setpoint = 7.322623731

wait 1

voltage_setpoint = 7.369094212

wait 1

voltage_setpoint = 7.414213562

wait 1

voltage_setpoint = 7.457937255

wait 1

voltage_setpoint = 7.500222139

wait 1

voltage_setpoint = 7.541026486

wait 1

voltage_setpoint = 7.580310025

wait 1

voltage_setpoint = 7.618033989

Section 4 EXAMPLES

iLS600, iLS600-R and iLS1500 Series

Rev. 05.20.21_#1.0 advancedenergy.com 24

wait 1

voltage_setpoint = 7.654161149

wait 1

voltage_setpoint = 7.688655851

wait 1

voltage_setpoint = 7.721484054

wait 1

voltage_setpoint = 7.75261336

wait 1

voltage_setpoint = 7.782013048

wait 1

voltage_setpoint = 7.809654105

wait 1

voltage_setpoint = 7.835509251

wait 1

voltage_setpoint = 7.859552972

wait 1

voltage_setpoint = 7.881761538

wait 1

voltage_setpoint = 7.902113033

wait 1

voltage_setpoint = 7.920587371

wait 1

voltage_setpoint = 7.937166322

wait 1

voltage_setpoint = 7.951833524

wait 1

voltage_setpoint = 7.964574501

wait 1

voltage_setpoint = 7.975376681

wait 1

voltage_setpoint = 7.984229403

wait 1

Section 4 EXAMPLES

iLS600, iLS600-R and iLS1500 Series

Rev. 05.20.21_#1.0 advancedenergy.com 25

voltage_setpoint = 7.991123929

wait 1

voltage_setpoint = 7.996053457

wait 1

voltage_setpoint = 7.999013121

wait 1

voltage_setpoint = 8

wait 1

voltage_setpoint = 7.999013121

wait 1

voltage_setpoint = 7.996053457

wait 1

voltage_setpoint = 7.991123929

wait 1

voltage_setpoint = 7.984229403

wait 1

voltage_setpoint = 7.975376681

wait 1

voltage_setpoint = 7.964574501

wait 1

voltage_setpoint = 7.951833524

wait 1

voltage_setpoint = 7.937166322

wait 1

voltage_setpoint = 7.920587371

wait 1

voltage_setpoint = 7.902113033

wait 1

voltage_setpoint = 7.881761538

wait 1

voltage_setpoint = 7.859552972

wait 1

voltage_setpoint = 7.835509251

Section 4 EXAMPLES

iLS600, iLS600-R and iLS1500 Series

Rev. 05.20.21_#1.0 advancedenergy.com 26

wait 1

voltage_setpoint = 7.809654105

wait 1

voltage_setpoint = 7.782013048

wait 1

voltage_setpoint = 7.75261336

wait 1

voltage_setpoint = 7.721484054

wait 1

voltage_setpoint = 7.688655851

wait 1

voltage_setpoint = 7.654161149

wait 1

voltage_setpoint = 7.618033989

wait 1

voltage_setpoint = 7.580310025

wait 1

voltage_setpoint = 7.541026486

wait 1

voltage_setpoint = 7.500222139

wait 1

voltage_setpoint = 7.457937255

wait 1

voltage_setpoint = 7.414213562

wait 1

voltage_setpoint = 7.369094212

wait 1

voltage_setpoint = 7.322623731

wait 1

voltage_setpoint = 7.274847979

wait 1

voltage_setpoint = 7.225814107

wait 1

Section 4 EXAMPLES

iLS600, iLS600-R and iLS1500 Series

Rev. 05.20.21_#1.0 advancedenergy.com 27

voltage_setpoint = 7.175570505

wait 1

voltage_setpoint = 7.124166756

wait 1

voltage_setpoint = 7.07165359

wait 1

voltage_setpoint = 7.018082832

wait 1

voltage_setpoint = 6.963507348

wait 1

voltage_setpoint = 6.907980999

wait 1

voltage_setpoint = 6.851558583

wait 1

voltage_setpoint = 6.794295781

wait 1

voltage_setpoint = 6.736249105

wait 1

voltage_setpoint = 6.67747584

wait 1

voltage_setpoint = 6.618033989

wait 1

voltage_setpoint = 6.557982212

wait 1

voltage_setpoint = 6.497379774

wait 1

voltage_setpoint = 6.436286483

wait 1

voltage_setpoint = 6.374762629

wait 1

voltage_setpoint = 6.31286893

wait 1

voltage_setpoint = 6.250666467

Section 4 EXAMPLES

iLS600, iLS600-R and iLS1500 Series

Rev. 05.20.21_#1.0 advancedenergy.com 28

wait 1

voltage_setpoint = 6.188216627

wait 1

voltage_setpoint = 6.125581039

wait 1

voltage_setpoint = 6.062821518

wait 1

voltage_setpoint = 6

wait 1

voltage_setpoint = 5.937178482

wait 1

voltage_setpoint = 5.874418961

wait 1

voltage_setpoint = 5.811783373

wait 1

voltage_setpoint = 5.749333533

wait 1

voltage_setpoint = 5.68713107

wait 1

voltage_setpoint = 5.625237371

wait 1

voltage_setpoint = 5.563713517

wait 1

voltage_setpoint = 5.502620226

wait 1

voltage_setpoint = 5.442017788

wait 1

voltage_setpoint = 5.381966011

wait 1

voltage_setpoint = 5.32252416

wait 1

voltage_setpoint = 5.263750895

wait 1

Section 4 EXAMPLES

iLS600, iLS600-R and iLS1500 Series

Rev. 05.20.21_#1.0 advancedenergy.com 29

voltage_setpoint = 5.205704219

wait 1

voltage_setpoint = 5.148441417

wait 1

voltage_setpoint = 5.092019001

wait 1

voltage_setpoint = 5.036492652

wait 1

voltage_setpoint = 4.981917168

wait 1

voltage_setpoint = 4.92834641

wait 1

voltage_setpoint = 4.875833244

wait 1

voltage_setpoint = 4.824429495

wait 1

voltage_setpoint = 4.774185893

wait 1

voltage_setpoint = 4.725152021

wait 1

voltage_setpoint = 4.677376269

wait 1

voltage_setpoint = 4.630905788

wait 1

voltage_setpoint = 4.585786438

wait 1

voltage_setpoint = 4.542062745

wait 1

voltage_setpoint = 4.499777861

wait 1

voltage_setpoint = 4.458973514

wait 1

voltage_setpoint = 4.419689975

Section 4 EXAMPLES

iLS600, iLS600-R and iLS1500 Series

Rev. 05.20.21_#1.0 advancedenergy.com 30

wait 1

voltage_setpoint = 4.381966011

wait 1

voltage_setpoint = 4.345838851

wait 1

voltage_setpoint = 4.311344149

wait 1

voltage_setpoint = 4.278515946

wait 1

voltage_setpoint = 4.24738664

wait 1

voltage_setpoint = 4.217986952

wait 1

voltage_setpoint = 4.190345895

wait 1

voltage_setpoint = 4.164490749

wait 1

voltage_setpoint = 4.140447028

wait 1

voltage_setpoint = 4.118238462

wait 1

voltage_setpoint = 4.097886967

wait 1

voltage_setpoint = 4.079412629

wait 1

voltage_setpoint = 4.062833678

wait 1

voltage_setpoint = 4.048166476

wait 1

voltage_setpoint = 4.035425499

wait 1

voltage_setpoint = 4.024623319

wait 1

Section 4 EXAMPLES

iLS600, iLS600-R and iLS1500 Series

Rev. 05.20.21_#1.0 advancedenergy.com 31

voltage_setpoint = 4.015770597

wait 1

voltage_setpoint = 4.008876071

wait 1

voltage_setpoint = 4.003946543

wait 1

voltage_setpoint = 4.000986879

wait 1

voltage_setpoint = 4

wait 1

voltage_setpoint = 4.000986879

wait 1

voltage_setpoint = 4.003946543

wait 1

voltage_setpoint = 4.008876071

wait 1

voltage_setpoint = 4.015770597

wait 1

voltage_setpoint = 4.024623319

wait 1

voltage_setpoint = 4.035425499

wait 1

voltage_setpoint = 4.048166476

wait 1

voltage_setpoint = 4.062833678

wait 1

voltage_setpoint = 4.079412629

wait 1

voltage_setpoint = 4.097886967

wait 1

voltage_setpoint = 4.118238462

wait 1

voltage_setpoint = 4.140447028

Section 4 EXAMPLES

iLS600, iLS600-R and iLS1500 Series

Rev. 05.20.21_#1.0 advancedenergy.com 32

wait 1

voltage_setpoint = 4.164490749

wait 1

voltage_setpoint = 4.190345895

wait 1

voltage_setpoint = 4.217986952

wait 1

voltage_setpoint = 4.24738664

wait 1

voltage_setpoint = 4.278515946

wait 1

voltage_setpoint = 4.311344149

wait 1

voltage_setpoint = 4.345838851

wait 1

voltage_setpoint = 4.381966011

wait 1

voltage_setpoint = 4.419689975

wait 1

voltage_setpoint = 4.458973514

wait 1

voltage_setpoint = 4.499777861

wait 1

voltage_setpoint = 4.542062745

wait 1

voltage_setpoint = 4.585786438

wait 1

voltage_setpoint = 4.630905788

wait 1

voltage_setpoint = 4.677376269

wait 1

voltage_setpoint = 4.725152021

wait 1

Section 4 EXAMPLES

iLS600, iLS600-R and iLS1500 Series

Rev. 05.20.21_#1.0 advancedenergy.com 33

voltage_setpoint = 4.774185893

wait 1

voltage_setpoint = 4.824429495

wait 1

voltage_setpoint = 4.875833244

wait 1

voltage_setpoint = 4.92834641

wait 1

voltage_setpoint = 4.981917168

wait 1

voltage_setpoint = 5.036492652

wait 1

voltage_setpoint = 5.092019001

wait 1

voltage_setpoint = 5.148441417

wait 1

voltage_setpoint = 5.205704219

wait 1

voltage_setpoint = 5.263750895

wait 1

voltage_setpoint = 5.32252416

wait 1

voltage_setpoint = 5.381966011

wait 1

voltage_setpoint = 5.442017788

wait 1

voltage_setpoint = 5.502620226

wait 1

voltage_setpoint = 5.563713517

wait 1

voltage_setpoint = 5.625237371

wait 1

voltage_setpoint = 5.68713107

Section 4 EXAMPLES

iLS600, iLS600-R and iLS1500 Series

Rev. 05.20.21_#1.0 advancedenergy.com 34

wait 1

voltage_setpoint = 5.749333533

wait 1

voltage_setpoint = 5.811783373

wait 1

voltage_setpoint = 5.874418961

wait 1

voltage_setpoint = 5.937178482

wait 1

return

rem step 3 - ramp 6V to 8V over 100ms and hold for 200ms

step3:

for i = 6 to 8 step 0.02

voltage_setpoint = i

wait 1

next i

wait 200

Return

rem step 4 - return to initial condition

step4:

voltage_setpoint = 12

Return

Below is a screen shot of the output of the Rack 50-40 iLS power supply running the script:

Section 4 EXAMPLES

iLS600, iLS600-R and iLS1500 Series

Rev. 05.20.21_#1.0 advancedenergy.com 35

The following limitations apply to scripts that are to be run on the Bench iLS and Rack iLS
power supplies:

a) The total size of the script text (including its name) must be 32768 characters or
less. This limit includes the space added for a null-terminator appended to the
end of each line of the script as it is downloaded.

b) The total number of elements in the compiled script must be less than 500. Note:
each line of a script is compiled into one element except for lines using the
keywords FOR, IF, and LET (when using a math operator), which are compiled
into two elements. Remark statements and blank lines do not get compiled (i.e. no
element is generated).

c) Scripts are executed using a 1 millisecond timer. Up to 10 elements are executed
per millisecond. If a WAIT statement is encountered, the execution for that
millisecond stops.

d) Script lines must be less than 256 characters in length.

e) Up to 100 variables may be defined (not including reserved variables).

f) Variable names may not exceed 32 characters in length.

g) Up to 100 labels may be declared.

h) Label names may not exceed 32 characters in length.

i) Nested subroutines may be called up to a depth of 10.

j) Latency between the analog inputs and outputs and the corresponding script
reserved variables can be up to 3 milliseconds.

k) Variables are implemented as 32-bit floating-point numbers. It is the user’s
responsibility to be cognizant of the accuracy limitations of floating point variables
and to code their scripts accordingly.

Section 5 LIMITATIONS

iLS600, iLS600-R and iLS1500 Series

Rev. 05.20.21_#1.0 advancedenergy.com 36

When a script is downloaded it is not checked for errors until it is compiled. A script is
compiled each time an attempt is made to run the script. If any errors are found during
compilation, the following message is displayed briefly on the front panel:

It is the user’s responsibility to review the script to determine the cause of the error.

Section 6 STATUS AND ERRORS

iLS600 and iLS1500 Rev.05.20.21_#1.0

For international contact information,
visit advancedenergy.com.

ABOUT ADVANCED ENERGY

Advanced Energy (AE) has devoted more than three
decades to perfecting power for its global customers. AE
designs and manufactures highly engineered, precision
power conversion, measurement and control solutions for
mission-critical applications and processes.

Our products enable customer innovation in complex
applications for a wide range of industries including
semiconductor equipment, industrial, manufacturing,
telecommunications, data center computing, and medical.
With deep applications know-how and responsive service
and support across the globe, we build collaborative
partnerships to meet rapid technological developments,
propel growth for our customers, and innovate the future
of power.

Specifications are subject to change without notice. Not responsible
for errors or omissions. ©2020 Advanced Energy Industries, Inc. All rights
reserved. Advanced Energy®, and AE® are U.S. trademarks

of Advanced Energy Industries, Inc.

powersales@aei.com (Sales Support)
productsupport.ep@aei.com (Technical Support)
+1 888 412 7832

