

 FUNCTIONAL DESCRIPTION

FUNCTIONAL DESC 73-769-001 MOD MODEL : 73-769-001
CHECKED : DRAWING NO : 50766000370
DATE : September, 24 2009 SH : 1 of 9

1.0 REVISION LEVEL

1.1 FUNCTIONAL DESCRIPTION REVISION HISTORY

ISSUE ECO # REVISION
DESCRIPTION AUTHOR APPROVED

01 G20080526C Initial Release Marco Florcruz Vincent Vivar

Alberto Malvar

02 Updated for FW v00.16.00 Marco Florcruz Vincent Vivar

 FUNCTIONAL DESCRIPTION

FUNCTIONAL DESC 73-769-001 MOD MODEL : 73-769-001
CHECKED : DRAWING NO : 50766000370
DATE : September, 24 2009 SH : 2 of 9

1.2 PRODUCT REVISION HISTORY

MODEL CODE: 73-769-001

SPEC
NO. REV. DATE CUST MODEL NO.

OR P/N & REV.
MODEL

REV. REMARKS

41966007110 0A

41966007110 01

41966007110 03

41966007110 05

1.3 DESIGN AUTHORITY: SOFTWARE GROUP - AIL PHILIPPINE BRANCH

 FUNCTIONAL DESCRIPTION

FUNCTIONAL DESC 73-769-001 MOD MODEL : 73-769-001
CHECKED : DRAWING NO : 50766000370
DATE : September, 24 2009 SH : 3 of 9

2.0 GENERAL DESCRIPTION AND CONTENTS

2.1 TITLE

Software Release Notes
For

73-769-001 Module DLL
Functional Description

File

 FUNCTIONAL DESCRIPTION

FUNCTIONAL DESC 73-769-001 MOD MODEL : 73-769-001
CHECKED : DRAWING NO : 50766000370
DATE : September, 24 2009 SH : 4 of 9

2.2 TABLE OF CONTENTS

1. REVISION LEVEL

 1.1 IPS REVISION HISTORY
 1.2 PRODUCT REVISION HISTORY
 1.3 DESIGN AUTHORITY

2. GENERAL DESCRIPTIONS AND CONTENTS

2.1 TITLE
2.2 TABLE OF CONTENTS
2.3 GENERAL DESCRIPTION AND SCOPE

2.3.1

 FUNCTIONAL DESCRIPTION

FUNCTIONAL DESC 73-769-001 MOD MODEL : 73-769-001
CHECKED : DRAWING NO : 50766000370
DATE : September, 24 2009 SH : 5 of 9

2.3 GENERAL DESCRIPTION AND CONTENTS
2.3.1 System Requirements

• PC-compatible system
• USB port (1.1 or 2.0 compatible)
• Microsoft Windows 98(SE), ME, 2000 or XP

2.3.2 Installation
The USB-to-I2C adapter is an HID class device and requires no driver installation to use. The built in HID driver
of the operating is used for the driver. Once the adapter is plugged on the USB port, detection can be confirmed
in the Device Manager. Upon successful detection of the adapter, an HID-compliant device will be added as
seen in Figure 1.

Figure 1 Device Manager when Adapter is Detected

2.3.3 About the DLL
There are two available DLL files available for use with the USB-to-I2C adapter, each using a different function
calling convention. Aside from the function calling convention, there are no other differences between the two
DLL. Similar functions are available for both DLL. The two DLL files are:

• iMpDll.dll – Uses C Calling; Calling function cleans the stack
• ail_HID_std.dll – Uses Standard Calling; Called function cleans the stack

To be able to use applications using the DLL, the DLL should be copied in the System32 folder located at the
Windows directory (Default: Windows\System32).

 FUNCTIONAL DESCRIPTION

FUNCTIONAL DESC 73-769-001 MOD MODEL : 73-769-001
CHECKED : DRAWING NO : 50766000370
DATE : September, 24 2009 SH : 6 of 9

2.3.4 Available Functions
Function Name: MPUReset
Description: Resets the USB-to-I2C Adapter. When sent, the USB-to-I2C will be detected to

be Detached, and then Re-attached. All buffers and states are cleared. Since
reset will involve detachment and re-attachment of the adapter, communication
will be unavailable for a few seconds. It is recommended not to perform
communication for a few secs (around 5 seconds) before retrying. No return
code should be expected on this version.

Prototype:
 C/C++: unsigned char MPUReset(void);
 Visual Basic: MPUReset() As Byte
Input Parameters: None
Output Parameters: None

Function Name: MPUSBGetDLLVersion
Description: Returns current DLL version, which is a non-zero value. A zero will be returned

on an error.
Prototype:
 C/C++: unsigned short MPUSBGetDLLVersion(void);
 Visual Basic: MPUSBGetDLLVersion() As Integer
Input Parameters: None
Output Parameters: Returns unsigned int interpreted as follows:

MSB – Major version
LSB – Minor Version
MSB and LSB are interpreted as Hexadecimal values

Function Name: MPUSBGetDeviceVersion
Description: Returns USB-to-I2C Adapter firmware version, which is a non-zero value. A

zero will be returned on an error.
Prototype:
 C/C++: unsigned short MPUSBGetDeviceVersion(void);
 Visual Basic: MPUSBGetDeviceVersion() As Integer
Input Parameters: None
Output Parameters: Returns unsigned int interpreted as follows:

MSB – Minor Version
LSB – Major version
MSB and LSB are interpreted as Hexadecimal values

Function Name: MPUGetI2CFrequency
Description: Returns I2C frequency of USB-to-I2C Adapter is currently operating at, which is

a non-zero value. A zero will be returned on an error.
I2C frequency accuracy is supported to be within 2% at below 100kHz. I2C
frequency accuracy above 100kHz is not guaranteed. If accurate frequency is
needed, it is recommended to verify the actual frequency using test
equipments.

Prototype:
 C/C++: unsigned integer MPUGetI2CFrequency (void);
 Visual Basic: MPUGetI2CFrequency() As Integer
Input Parameters: None
Output Parameters: Returns I2C frequency in Hz. Possible values from 10-400

Function Name: MPUSetI2CFrequency
Description: Sets current I2C frequency of USB-to-I2C Adapter to desired frequency.

Allowed frequency is from 10 kHz to 400 kHz. Attempting to set I2C frequency
below/above allowable frequencies will set frequency to minimum/maximum
allowable frequency. It will return the actual frequency set, which is a non-zero
value. A zero will be returned on an error.

 FUNCTIONAL DESCRIPTION

FUNCTIONAL DESC 73-769-001 MOD MODEL : 73-769-001
CHECKED : DRAWING NO : 50766000370
DATE : September, 24 2009 SH : 7 of 9

Note that while setting frequency above 100 kHz is allowed, operating at above
100 kHz is not supported.
I2C frequency accuracy is supported to be within 2% at below 100kHz. I2C
frequency accuracy above 100kHz is not guaranteed. If accurate frequency is
needed, it is recommended to verify the actual frequency using test
equipments.

Prototype:
 C/C++: unsigned integer MPUSetI2CFrequency(unsigned int

frequency);
 Visual Basic: MPUSetI2CFrequency(ByVal frequency As Integer) As Integer
Input Parameters: frequency - Desired I2C frequency, value accepted from 10-400
Output Parameters: Returns actual I2C frequency set

Function Name: MPUI2CWrite
Description: Performs I2C write to a destination address. The number of bytes to be sent

must be stated, as well as the pointer to the memory location of the first byte to
be sent. It must also be stated whether to include a stop bit will be sent at the
end of transmission or not.

S Address W A nBytes of Data A P?

Figure 2 I2C Write

Prototype:
 C/C++: unsigned char MPUI2CWrite(unsigned char address, unsigned

short nBytes, *unsigned char WriteData, unsigned short
SendStop);

 Visual Basic: MPUI2CWrite(ByVal address As Byte, ByVal nBytes As
Integer, ByRef WriteData As Byte, ByVal SendStop As Bool)
As Byte

Input Parameters: address – Destination I2C address (7-bit)
nBytes – Number of bytes to send (maximum of 60 bytes)
WriteData – Memory address of location of 1st byte to be sent
SendStop – Set to ‘1’ to transmit stop bit; Set to ‘0’ to not transmit stop bit

Output Parameters: See Section 2.3.5 Error Codes

Function Name: MPUI2CRead
Description: Performs I2C read to a destination address. The number of bytes to be

received must be stated, as well as the pointer to the memory location where
the first byte received will be stored. It must also be stated whether to include a
stop bit will be sent at the end of transmission or not.

S Address R A nBytes of Data A P?

Figure 3 I2C Read

Prototype:
 C/C++: unsigned char MPUI2CRead(unsigned char address, unsigned

short nBytes, *unsigned char ReadData, unsigned short
SendStop);

 Visual Basic: MPUI2CRead(ByVal address As Byte, ByVal nBytes As Integer,
ByRef ReadData As Byte, ByVal SendStop As Bool) As Byte

Input Parameters: address – Destination I2C address (7-bit)
nBytes – Number of bytes to send (maximum of 60 bytes)
Readata – Memory address of location where 1st byte to be received will be
stored
SendStop – Set to ‘1’ to transmit stop bit; Set to ‘0’ to not transmit stop bit

Output Parameters: See Section 2.3.5 Error Codes

 FUNCTIONAL DESCRIPTION

FUNCTIONAL DESC 73-769-001 MOD MODEL : 73-769-001
CHECKED : DRAWING NO : 50766000370
DATE : September, 24 2009 SH : 8 of 9

Function Name: MPUI2CWriteArray
Description: Performs I2C write array to a destination address, is an I2C write wherein the

1st byte sent is the sub-address (i.e. in PMBus, the subaddress will be the
PMBus command), followed a certain number of bytes, with a stop bit at the
end.

S Address W A Sub-Address A nBytes of Data A P

Figure 4 I2C Write Array

Prototype:
 C/C++: unsigned char MPUI2CWriteArray(unsigned char address,

unsigned char subaddress, unsigned short nBytes, *unsigned
char WriteData);

 Visual Basic: MPUI2CwriteArray(ByVal address As Byte, ByVal subaddress
As Byte, ByVal nBytes As Integer, ByRef WriteData As Byte)
As Byte

Input Parameters: address – Destination I2C address
subaddress – Destination sub-address
nBytes – Number of bytes to send (maximum of 60 bytes)
WriteData – Memory address of location of 1st byte to be sent

Output Parameters: See Section 2.3.5 Error Codes

Function Name: MPUI2CReadArray
Description: Performs I2C read array to a destination address, wherein an I2C write sending

one byte of sub-address (i.e. in PMBus, the subaddress will be the PMBus
command) is performed (without stop bit), followed by an I2C read of a certain
number of bytes. A stop bit is then sent at the end.

S Address W A Sub-
Address

A Address R A nBytes
of Data

A P

Figure 5 I2C Read Array

Prototype:
 C/C++: unsigned char MPUI2CReadArray(unsigned char address,

unsigned char subaddress, unsigned short nBytes, *unsigned
char ReadData);

 Visual Basic: MPUI2CReadArray (ByVal address As Byte, ByVal subaddress As
Byte, ByVal nBytes As Integer, ByRef ReadData As Byte) As
Byte

Input Parameters: address – Source I2C address
subaddress – Source sub-address
nBytes – Number of bytes to receive (maximum of 60 bytes)
ReadData – Memory address of location where 1st byte to be received will be
stored

Output Parameters: See Section 2.3.5 Error Codes

 FUNCTIONAL DESCRIPTION

FUNCTIONAL DESC 73-769-001 MOD MODEL : 73-769-001
CHECKED : DRAWING NO : 50766000370
DATE : September, 24 2009 SH : 9 of 9

2.3.5 Error Codes
The following are the error codes returned on some of the functions described in Section 2.3.4:
0x00 - No Error
0x01 - Address NACK
0x02 - Data NACK
0x11 - Buffer Limit (Hardware buffer)
0x12 - Bus Collision (Occurs at sending Start or Stop bit)
0x13 - Write Collision (Occurs of Adapter is writing data during I2C Write)
0x14 - Idle Timeout
0x15 - Start Timeout
0x16 - Restart Timeout
0x17 - Stop Timeout
0x18 - Read Timeout
0x19 - ACK Timeout
0x81 - Buffer Overflow (Software buffer)
0xFF - USB Hardware not detected

